Where will lightning strike next A new model could help pilots avoid

Where will lightning strike next A new model could help pilots avoid

first_img Where will lightning strike next? A new model could help pilots avoid dangerous storms Weather models can forecast severe storms pretty well, but predictions of lightning have remained elusive. Now, researchers have created global simulations of lightning that more accurately capture when and where the strikes will occur—which could help people trying to avoid them, such as airline pilots.Lightning generally requires two ingredients. First, it needs warm, rising air, or convection, to create thunderclouds. It also needs the thunderclouds to contain icy pellets known as graupel. Colliding pellets transfer electric charge, creating an electric field. A lightning bolt forms when that field gets big enough.Weather and climate models, which divide the atmosphere into grid boxes of a certain size, have struggled to simulate lightning because their spatial resolution is too coarse, typically 100 kilometers or so. The processes that give rise to convective thunderclouds and graupel happen at too small a scale for computers to simulate them globally in any reasonable amount of time. To make daily forecasts, weather models have to instead rely on “parameterizations” for things like convection—ad hoc rules of thumb that can be performed quickly. Sign up for our daily newsletter Get more great content like this delivered right to you! Country Gene Blevins/REUTERS Time-lapse photo of a plane in a lightning storm Click to view the privacy policy. Required fields are indicated by an asterisk (*)center_img Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe To avoid some of these assumptions, Paul Field, a cloud scientist at the Met Office, the United Kingdom’s national weather service with headquarters in Essex, and his colleagues simulated 5 years’ worth of lightning in a global model that could resolve details as small as 10 kilometers. That allowed them to simulate the convective cloud formation processes explicitly, although they still had to make assumptions about the formation of graupel.Even so, the team’s model accurately pinpointed lightning hot spots in South America, Africa, and southeast Asia that experience nearly 100 lightning flashes per square kilometer per year. The model also correctly captured how lightning typically occurs in the afternoon, around 3 p.m. local time. That timing makes sense because the ground has warmed by then, and warmer air has had time to move upward and form clouds, Field says.The simulations also reproduced some real-world peculiarities of lightning. For instance, the new model accurately showed how lightning over Lake Victoria in Africa occurs late in the day. This effect is due to the lake’s water heating more slowly than the surrounding land, resulting in delayed upward movement of warmer air, Field says. The model also reproduced the daily eastward movement of lightning over the Great Plains of the United States, a pattern caused by prevailing winds, the team reports in the Journal of Geophysical Research.These new lighting maps could potentially provide a better estimate of lightning threats to aircraft, the researchers suggest. Scientists could use this model to generate a map of weather hazards for aviation, says Field, because existing maps are “pretty crude.”The work could also be used to predict how lightning patterns might shift in different climate change scenarios, changes that will impact Earth’s atmosphere, says Declan Finney, an atmospheric scientist at the University of Leeds in the United Kingdom who was not involved in the research. By Katherine KorneiSep. 5, 2018 , 12:40 PM Emaillast_img

Leave a Reply

Your email address will not be published. Required fields are marked *